G3iii: Regulation of the heart

CO = HR x SV

  • Determinants of myocardial performance
    • HR
    • PreL
    • AfterL
    • Contractility
  • Regulation of Cardiac Performance
    1. INTRINSIC
      • Pacemaker activity
      • Frank-Starling Mechanism
    2. EXTRINSIC
      • Neural
      • Hormonal
      • Chemical/Metabolic
      • Drugs (do not regulate, but influence)

Intrinsic Regulation

  • Intrinsic Pacemaker Activity
    • The heart can initiate its own beat in absence of neural/hormonal control
    • Intrinsic rate of discharge of SA Node ~100bpm (in absence of autonomic influences. This is KA INTRINSIC HR)

The Frank-Starling Mechanism

Frank-Starling Law states the ability of the cardiac muscle fibre to contract is dependent upon, and proportional to, its initial fibre length

  • An intrinsic cardiac adaption
  • Extra blood flows into ventricles
  • Results in ↑preload
  • Increases sarcomere length
  • ↑FoC generated because there is ↑actin/myosin overlap
  • This continues to occur with ↑preload until an optimum preL is reached → optimal resting sarcomere length = 2.2µm
  • Excess high filling pressure → myocardial fibres over stretch → ↓FoC
  • This important intrinsic adaption allows CO to match VR of the R & L ventricles
  • This is displayed by the FRANK-STARLING CURVE
  • ↑preL causes patient to shift along curve, resulting in ↑CO with each contraction
  • ↓preL will cause the opposite
  • Whole curve can be shifted with + INOTROPY or CARDIAC FAILURE
    • +ve inotropy → ↑CO for a given preL, shifting curve UP & LEFT
    • Myocardial failure → for any preL, CO will ↓, shifting curve DOWN & RIGHT

Extrinsic Control

  • ANS
  • Cardiac reflexes
  • Hormones
  • Temperature
  • Metabolic/Electrolytes
  • Drugs (do not regulate, but influence)

Autonomic Innervation of the Heart

Efferent Nerve Fibre Origin

Parasympathetic

  • Cell bodies in Medulla
  • Collections KA DORSAL VAGAL NUCLEUS & NUCLEUS AMBIGUUS

Sympathetic

  • Vasomotor Centre in ROSTRAL VENTROLATERAL MEDULLA

Efferent Nerve Pathway

Parasympathetic

  • Exits at CN X (Vagus)
  • As R+L vagal branches synapses in/near Epicardium & Myocardium + near SA & AV Node

Sympathetic

  • PREGANGLIONIC: inferomediolateral grey columns of SC
  • GANGLIA: paravertebral chain
  • POSTGANGLIONIC: supracardial plexus & adventia layer of blood vessels

NT Receptors Intracellular Response outcome

Parasympathetic

  • Ach
  • Muscarinic
  • M2 Receptors
  • Gq→ ↑K+ → membrane hyperpolarisation
  • ↓HR (↓automaticity)
  • ↓transmission through AV Node
  • ↓Contractility
  • Slows relaxation in diastole

Sympathetic

  • ACh & NA → β1 receptors
  • GS → ↑cAMP → ↑Ca2+
  • ↑Inotropy
  • ↑Chronotropy
  • ↑Automaticity
  • Coronary VD
  • ↑dP/dt

DoA

Parasympathetic

  • Rapid onset & offset due to AChE

Sympathetic

  • Slow onset but longer lasting due to amplification by 2nd messenger system

Basal Tone

BaroR Reflex

Parasympathetic

  • Predominates at rest
  • Stimulatory

Sympathetic

  • ↓symp. activity at rest
  • Inhibitory

Cardiac Reflexes

  • Definition: a fast-acting loop between H & CNS
  • Consists of:
    • Afferent Sensor (monitors cardiac function) in atria, ventricles, CA, great vessels

→ Control (CNS)

→ Effector organ (ANS)

  • Function: to maintain constant CO & critical organ perfusion
  • The 6 Cardiac Reflexes
  1. BaroR
  2. ChemoR
  3. Bainbridge
  4. Bezold – Jarisch
  5. Cushing’s
  6. Oculocardiac

 

Reflex Sensor

Afferents

Baroreceptor Stretch

Baroreceptors in aortic arch

Carotid sinus

Chemoreceeptor Chemo

Carotid + aortic bodies

Bainbridge Stretch

RA wall

Cavoatrial junction

Bezold-Jarisch Chemo & Mechano

Ventricle wall

Unmyelinated Type C fibres

Cushing’s

CNS

Oculocarrdiac

Extra-ocular muscle & globe

Reflex Sensor

Stimulators

Baroreceptor Stretch

↑Transluminal pressure

Chemoreceeptor Chemo

pO2 <80

pO2 >40

pH <7.4

Bainbridge Stretch

Stretch

↑filling

Bezold-Jarisch Chemo & Mechano

Noxious stimuli

Cushing’s

Ischaemia 2° ↑ ICP

Oculocarrdiac

↑pressure

Reflex Sensor

Control

Baroreceptor Stretch

Via glossoph. (carotid)

Vagus (arch) to CV Centre of Medulla

Chemoreceeptor Chemo

Via glossoph. (carotid)

Vagus (aortic) to CV Centre of Medulla

Bainbridge Stretch

Via vagus (X) to CV Centre in CNS

Bezold-Jarisch Chemo & Mechano

Medulla vasomotor centre

Cushing’s

Direct symp. stimulation of vasomotor centre

Oculocarrdiac

Ciliary nerve to Trigeminal

Reflex Sensor

Efferent

Baroreceptor Stretch

NEGATIVE FEEDBACK inhibits symp. & ↑parasymp. nerves

Chemoreceeptor Chemo

  1. Stimulates resp centre
  2. ↑SNS
  3. ↑catecholamine release from Adrenal Medulla

Bainbridge Stretch

PNS inhibition = ↑HR

Directly stimulates SA node = ↑HR,↑ANS, ↓ADH

Bezold-Jarisch Chemo & Mechano

↑PNS activity

Cushing’s

MASS SYMP. STIMULATION

Oculocarrdiac

Vagus

↑PNS

Reflex Sensor

Overall effect

Baroreceptor Stretch

@Heart

  • ↓HR
  • ↓FoC
  • ↓CO

@Vessels

  • ↓VR
  • ↓venous/ arterial tone

Chemoreceeptor Chemo

  • ↑MV
  • ↑HR
  • ↑FoC
  • VD CA
  • ↑SVR

Bainbridge Stretch

  • ↑HR
  • ↑NaCl/H2O excretion
  • ↑urine output

Bezold-Jarisch Chemo & Mechano

Triad of:

  1. ↓HR
  2. ↓BP
  3. ↓SVR

Cushing’s

  • ↑HR
  • ↑BP
  • ↑FoC (to trigerminal & CAP)
  • BaroR
  • Reflex brady

Oculocarrdiac

  • ↓HR
  • ↓Foc
  • ↓BP

Hormones

Catecholamines

  • Adrenaline & NA released by Adrenal Medulla
  • Regulated by same mechanisms controlling Symp NS activity
  • ∴ activation = ↑[catecholamine]
  • ↑FoC

Thyroid Hormones

    • Direct effects
      • ↑FoC (↑Ca2+ uptake)
      • Cardiac hypertrophy (↑protein synthesis)
    • Indirect effects
      • ↑symp stimulation
      • ↑BMR

Insulin

  • Direct +ve INOTROPY of heart
  • ∴Augmentation of glucose uptake

Temperature

  • ↑temp = ↑HR
  • ↑cardiac muscle membrane to ions → accelerate self-excitation
  • Some ↑FoC but prolonged fever → exhausts metabolic system → cardiac failure
  • ↓temp = ↓HR

Chemical

Oxygen

    • Mod hypoxia → stimulates symp NS
    • Severe hypoxia → myocardial depression

pH from ↑PaCO2

  • ↓Ca2+ released when excited myocyte from SR
  • ↓sensitivity of myofilaments to Ca2+
  • Interference of actin-myosin interaction

Ca2+

    • Hypocalcaemia = cardiac weakness
    • Hypercalcaemia = spastic contraction

K+

  • Hyperkalaemia = ↓RMP = ↓intensity of AP = weak contraction
  • Bradycardia → blocks conduction through AV bundle